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Abstract: Sequential decision-making in dynamic and interconnected environments is a cornerstone of 1

numerous applications, ranging from communication networks and finance to distributed blockchain 2

systems and IoT frameworks. The multi-armed bandit (MAB) problem is a fundamental model 3

in this domain that traditionally assumes independent and identically distributed (iid) rewards, 4

which limits its effectiveness in capturing the inherent dependencies and state dynamics present 5

in some real-world scenarios. In this paper, we lay a theoretical framework for a modified MAB 6

model in which each arm’s reward is generated by a hidden Markov process. In our model, each 7

arm undergoes Markov state transitions independent of play in a way that results in varying reward 8

distributions and heightened uncertainty in reward observations. The number of states for each arm 9

can be up to three states. A key challenge arises from the fact that the underlying states governing 10

each arm’s rewards remain hidden at the time of selection. To address this, we adapt traditional 11

index-based policies and develop a modified index approach tailored to accommodate Markovian 12

transitions and enhance selection efficiency for our model. Our proposed proposed Markovian Upper 13

Confidence Bound (MC-UCB) policy achieves logarithmic regret. Comparative analysis with the 14

classical UCB algorithm reveals that MC-UCB consistently achieves approximately a 15% reduction 15

in cumulative regret. This work provides significant theoretical insights and lays a robust foundation 16

for future research aimed at optimizing decision-making processes in complex, networked systems 17

with hidden state dependencies. 18

Keywords: Dynamic distributions; learning theory; Markov chain; multi-armed bandit. 19

1. Introduction 20

Decision-making in environments with network-like dependencies presents a fun- 21

damental challenge across various fields, including communication networks, finance, 22

and complex distributed systems [1–4]. In such environments, a decision-maker faces 23

interconnected structures where actions taken on one element may influence the states 24

or rewards of others, thereby creating dynamic dependencies reminiscent of those found 25

in networked systems. Examples of such networks can be found in resource allocation 26

across multiple communication channels in IoT (Internet of Things) sensor networks [5], 27

throughput optimization in distributed blockchain ecosystems [6], adaptive QoS (Quality 28

of Service) management in communication networks [7], and security or intrusion detec- 29

tion frameworks in large-scale system administration scenarios [8]. In these contexts, the 30

multi-armed bandit (MAB) problem, where a player repeatedly selects among multiple 31

uncertain options (arms), becomes more intricate due to underlying and often hidden state 32

transitions that evolve over time. 33

The original classical MAB formulation, introduced by Robbins [9,10], assumes that 34

each arm’s reward distribution remains fixed and independent over time. However, in 35

networked scenarios, these assumptions rarely hold: the reward distributions may shift 36

due to underlying Markovian state transitions that are hidden from the decision-maker [11]. 37

Arms in such a scenario can represent network nodes, communication links, or distributed 38
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Figure 1. A sample example of two-arms multi-armed bandit. The first arm has two states and the
second arm has one state.

resources whose performance and reliability evolve with time. The agent must continually 39

learn and adapt, taking into account latent transitions that are reminiscent of evolving 40

network conditions. 41

In this paper, we lay a theoretical framework for a modified MAB model in which each 42

arm’s reward is generated by a hidden Markov process. This approach models the type of 43

network-like dependencies found, for example, in dynamic IoT sensor networks—where 44

channel conditions and sensor states change stochastically and are not directly observ- 45

able—yet these state changes critically affect the rewards (e.g., reliable data transmission 46

or efficient resource utilization). Each arm in our model can transition among up to three 47

states, each associated with a different reward distribution, regardless of whether the 48

arm is played. The result is a problem setting that demands sophisticated exploration- 49

exploitation strategies that identify the best arms under evolving conditions and also cope 50

with underlying dynamics that reflect network interdependencies. 51

In this context, we evaluate the decision-maker’s performance using the concept of 52

regret, a metric that captures the cost of uncertainty in networked decision-making en- 53

vironments. Regret is defined as the difference between the expected reward an ideal 54

policy—one with complete knowledge of all arm statistics or hindsight advantage—would 55

achieve, and the reward achieved by the decision-maker’s actual strategy. An ideal policy 56

would consistently select the arm yielding the highest expected reward over time. This 57

concept, commonly referred to as weak regret, is a central performance measure in uncer- 58

tain decision problems, as highlighted by Auer et al. [12]. Our study focuses on regret, 59

particularly within interconnected, network-like settings. 60

MAB problems with Markovian rewards significantly heighten complexity due to 61

dynamic dependencies that reflect networked interactions. Here, each arm is modeled as 62

a Markov process with a finite set of states, each linked to a unique reward distribution. 63

The transition between states follows a known probability matrix, introducing a memory 64

element into the decision process where rewards depend not only on the current choice but 65

also on the hidden state of each arm [13–16]. This Markovian structure effectively simulates 66

a network in which states and rewards are dynamically interdependent over time. 67

The state transitions are determined by predefined probabilities, yet the exact state of 68

each arm remains hidden. This creates a layer of opacity similar to unobserved interactions 69

in networked systems [17–19]. Consequently, the player must infer each arm’s state from 70

the history of observed rewards. This amplifies the challenge of the exploration-exploitation 71

trade-off. The decision-maker faces a networked challenge: to exploit high-reward arms 72

based on historical performance or to explore underused arms to reveal potential reward 73

structures. Figure 1 illustrates an example of the problem and highlights the network-like 74

dependencies across arms. 75

A core challenge in this interconnected framework is to develop strategies that ef- 76

fectively balance immediate rewards with potential future gains that could arise from 77

transitioning into more advantageous states [20,21]. This networked trade-off between 78

short-term exploitation and long-term exploration is not purely theoretical or network- 79

related; it mirrors complex, real-world decision-making environments such as financial 80

portfolio management or adaptive clinical trials where treatments impact outcomes over 81

time [22–25]. 82
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In this work, we address these challenges by introducing a novel theoretical approach 83

to the MAB problem with Markovian dynamics and network-like dependencies where 84

each arm has up to three possible states. We adapt traditional index policies to account for 85

the intricate structure of state transitions. Our focus is on refining these policies to achieve 86

robust performance by attaining logarithmic regret even within the complex networked 87

dynamics of hidden state transitions. We further compare our modified index-based 88

policies with the classic upper confidence bound (UCB) algorithm. This study thus sets the 89

stage for a deeper understanding of decision strategies within networked environments 90

involving uncertainty and dynamic dependencies. 91

1.1. Main findings 92

This paper makes the following theoretical contributions: 93

• We demonstrate that for each arm, represented as an irreducible, finite-state, aperiodic, 94

and reversible three-state Markov chain, simple sample mean-based index policies 95

can achieve logarithmic regret uniformly over time, even in interconnected settings 96

resembling networked dependencies. 97

• We simplify the analysis of state transition probabilities by modeling the arms as 98

Markov chains with identical rewards that capture basic network-like structures in 99

which transitions are dependent on state dynamics. 100

• We present a numerical comparison of the regret incurred by our sample mean-based 101

index policy and evaluate its performance relative to other policies. 102

1.2. Application Context and Conceptual Validation in Network-Like Scenarios 103

While our primary contribution is theoretical, it is helpful to illustrate how this frame- 104

work can be built on to conceptually extend to real network scenarios. Consider, for 105

example, the following contexts: 106

• Security [26]: Arms may represent intrusion detection strategies whose efficacy varies 107

as an adversary’s tactics evolve over time. Each state transition corresponds to a 108

shift in the threat environment. Our Markovian MAB framework can guide strategic 109

decisions to maintain robust defense while learning dynamically about evolving 110

threats. 111

• Distributed Blockchain Systems [27]: Nodes or shards in a blockchain network might 112

yield variable validation rewards depending on their state of congestion or consensus 113

participation. The Markovian structure models the dynamic nature of node availability 114

and network conditions in a way that would help a node operator choose where to 115

allocate resources or which shard to support over time. 116

• QoS in Communication Networks [7]: Network links may fluctuate between high- 117

quality, moderate, and poor states due to changing traffic patterns. By representing 118

each link as a Markovian arm, our framework can assist in selecting the best channel 119

at any given time in order to balance the exploration of uncertain but potentially 120

high-quality links with the exploitation of known reliable ones. 121

• IoT and System Administration [28]: IoT nodes or servers can transition between 122

states that reflect varying processing loads or energy conditions. The Markovian MAB 123

model helps a controller decide which node to query or utilize for computations, 124

thereby maximizing long-term performance. 125

In sum, while this work is focused on the theoretical aspects and fundamental results 126

for up to three states, it offers a roadmap for future empirical explorations and practical 127

implementations. The stylized simulation experiments that we show later serve as a 128

preliminary demonstration and show that the theoretical principles hold in a controlled 129

synthetic environment, thus setting the stage for subsequent research aiming at more 130

comprehensive benchmarking in real-world network contexts. 131

The remainder of the paper is structured as follows. Section 2 gives the related work. 132

The problem is formally defined and presented in Section 3 presents the preliminaries. 133



Version January 7, 2025 submitted to Network 4

Section 4 shows the problem formulation. The Index policy and its regret analysis are 134

given in Section 5. Section 6 shows our numerical simulation results, and finally, Section 7 135

concludes the paper. 136

2. Related Work 137

The literature on MAB is vast and has evolved considerably from the original formu- 138

lations focusing on independent and identically distributed (iid) reward processes. Early 139

seminal work by Robbins and Lai and [9,10] established foundations for the iid case for 140

certain known environments. Over time, researchers have explored a broad spectrum 141

of MAB extensions that incorporate various forms of structure and dynamics. Notably, 142

Markovian reward processes represent a key generalization and enable the modeling of 143

scenarios where arm states—and thus rewards—evolve with memory and dependence on 144

previous states. 145

Early explorations into Markovian bandits can be found in the work of Anantharam 146

et al. [29], which analyzed index policies effective for arms governed by irreducible, 147

finite-state, aperiodic Markov chains. Their approach demonstrated how arms with state- 148

dependent rewards could still be tackled through index strategies that generalize the 149

Gittins index concept [30]. While these studies set important precedents for handling 150

Markovian structures, they often made simplifying assumptions, such as a single-parameter 151

transition function or identical state spaces across arms. In contrast, our framework does not 152

presume a single-parameter form for transition probabilities, nor does it require identical 153

state spaces. By allowing each arm to transition among up to three states under distinct 154

probability kernels, we offer a more flexible setting that can model diverse types of network 155

dependencies. 156

Building upon this foundation, research has examined the problem of achieving 157

low regret under more general conditions. Agrawal [31] and Auer et al. [32] established 158

classical logarithmic regret results for iid settings. Their contributions included index and 159

UCB-based strategies that guarantee optimal asymptotic and even uniformly logarithmic 160

performance over time. They rely heavily on the iid assumption and do not directly 161

address the complexities introduced by state transitions or network-like interdependencies. 162

More recent works have begun to relax these assumptions. For instance, Garivier and 163

Moulines [33] and Besbes et al. [34] considered bandit problems with non-stationary reward 164

distributions in a way that captures some aspects of temporal dynamics without fully 165

embracing Markovian state dependence. Such approaches typically rely on “resetting” 166

or “sliding-window” techniques that do not directly exploit known Markovian transition 167

structures. 168

In parallel, other authors have studied scenarios where multiple users or decision- 169

makers interact with the same set of arms in network settings, leading to complex dynamics 170

and collisions among players [35–37]. Here, the challenge lies in coordinating multiple 171

agents to minimize interference and collectively achieve low regret. While such multi-player 172

frameworks mirror network complexity, their primary focus is on handling concurrency 173

and competition rather than modeling state evolution within each arm. Our approach 174

differs by focusing explicitly on Markovian transitions at the arm level rather than strategic 175

interactions among multiple decision-makers. 176

The distinction between rested and restless bandits further highlights the complexity 177

in Markovian settings. In classical rested bandits, the state of an unplayed arm remains 178

frozen until chosen again, as examined in works like Ortner [38] and Raj and Kalyani 179

[39]. However, in restless bandits, arm states evolve regardless of selection, making the 180

problem significantly more complex. Restless bandits has explored structural results and 181

approximation algorithms for special cases [11,40]. Our framework takes a step forward 182

by considering a setting in which all arms transition at every round, falling somewhere 183

between the fully rested and fully restless extremes, and by establishing logarithmic regret 184

bounds in this intermediate regime. 185
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Compared to the closely related studies such as [15] and [29], our work introduces 186

a novel solution. For instance, Tekin et al. [15] restrict attention to two-state arms with 187

transitions occurring only when the arm is played, which simplifies the analysis but limits 188

applicability. In [29], the reward-generating process is governed by a single parameter and 189

identical state spaces across all arms. In contrast, our model allows each arm to have distinct 190

state spaces and transition matrices, and does not rely on a single-parameter structure. We 191

also require that the reward process be reversible, a mild assumption that enables cleaner 192

theoretical analysis. The indices we derive rely on sample means rather than complicated 193

recursive computations, and yield uniform logarithmic regret bounds rather than merely 194

asymptotic guarantees. 195

Lastly, recent theoretical studies on bandits with structure—such as Liu et al. [41], 196

who considered bandits with feedback graphs, or Chen et al. [42], who looked at dynamic 197

networked scenarios—point to a growing interest in incorporating more nuanced depen- 198

dencies into MAB models. Our results add to this literature by providing a more direct 199

handle on Markovian state transitions within a theoretically grounded bandit framework. 200

In sum, our work occupies a unique position at the intersection of Markovian bandits, 201

structured bandit problems, and theoretical analyses that strive for uniform logarithmic 202

regret. While prior research established important groundwork in various specialized 203

settings, we advance the state of the art by offering a flexible, three-state Markovian model, 204

clear conditions for reversibility, and efficient index-based strategies that can be analyzed 205

rigorously. This sets the stage for future studies aiming to extend these techniques to an 206

even broader range of network-like environments and more complex state spaces. 207

3. Preliminaries 208

This section provides an introduction to essential concepts that form the foundation 209

for our study of MABs with Markovian rewards, particularly in environments where 210

network-like dependencies may influence state transitions. We begin by discussing Markov 211

processes, which are essential for understanding the dynamic and interconnected nature of 212

our model, and proceed to explore fundamental aspects of MAB problems with a focus on 213

the complexities introduced by Markovian reward structures. 214

3.1. Markov Processes 215

A Markov process is a stochastic model that describes a sequence of possible events 216

where the probability of each event depends only on the state attained in the previous 217

event. In the context of Markov processes, the future is independent of the past given the 218

present. This property, known as the Markov property, is central to our analysis of bandit 219

arms as Markov chains, which can exhibit dependencies across states that reflect networked 220

interactions over time. 221

For a given Markov process, we define a state space X that contains all possible states 222

the process can occupy. The transitions between these states are governed by probabilities 223

defined in a transition matrix P, where each entry Puv represents the probability of moving 224

from state u to state v. This matrix is fundamental for predicting and understanding the 225

behavior of interconnected systems over time. 226

3.2. Markov Decision Processes in Bandit Problems 227

In MABs, a Markov Decision Process (MDP) provides a framework for decision- 228

making where transitions between states are determined not only by the current state but 229

also by the action taken by the decision-maker. Each action in an MDP results in a reward 230

and a transition to the next state where each arm pull can be viewed as an action within a 231

potentially networked system of state dependencies. 232

In a typical MAB problem with Markovian rewards, each arm represents an indepen- 233

dent Markov process. The player’s objective is to maximize cumulative rewards over a 234

sequence of arm pulls. The decision of which arm to pull involves evaluating the current 235

state of each arm and estimating potential rewards based on state transition probabilities, 236
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akin to navigating networked dependencies where each choice impacts future outcomes in 237

interconnected states. 238

3.3. Exploration vs. Exploitation in Markovian Bandits 239

A key challenge in MAB problems is the trade-off between exploration and exploita- 240

tion. This dilemma is more pronounced in Markovian bandits due to the changing state 241

of each arm. Exploration involves pulling less-understood arms to gain more information 242

about their reward distributions and state transitions. Exploitation means choosing arms 243

that are currently known to offer higher rewards based on accumulated knowledge. 244

Balancing these strategies is crucial for achieving optimal performance, especially 245

when the bandit arms exhibit state-dependent rewards that evolve according to Markov 246

dynamics. The player must not only consider immediate rewards but also the potential 247

future benefits of being in favorable states. 248

The concepts introduced in this section provide the necessary background to appreciate 249

the complexities involved in our study of MABs with Markovian rewards. Understanding 250

these principles is essential for developing effective strategies and algorithms to tackle the 251

dynamic and probabilistic nature of the problem. 252

4. Problem Formulation 253

We consider a scenario comprising K distinct arms, each labeled by an index i ∈ 254

{1, 2, . . . , K}. Each arm i is represented as an irreducible Markov chain with a finite state 255

space denoted by X (i). The transition kernel of arm i is known and is described by a 256

probability matrix P(i) = {p(i)uv : u, v ∈ X (i)}. Every state u of arm i yields a stationary 257

and strictly positive reward r(i)u . We assume that the K Markov chains (one per arm) are 258

mutually independent. Let ϕ(i) = {ϕ(i)
u : u ∈ X (i)} be the stationary distribution of the ith 259

arm. The mean reward of arm i, denoted by νi, can then be expressed as: 260

νi = ∑
u∈X (i)

r(i)u ϕ
(i)
u (1)

The arm with the largest mean reward is indicated by a superscript ⋆, so that ν⋆ = 261

max1≤i≤K νi. We define the regret of a policy α after n steps, Rα(n), as the difference 262

between the expected cumulative reward that would be obtained by always selecting 263

the best arm and the actual expected cumulative reward gathered under policy α. If α(t) 264

denotes the arm chosen by α at time t and xα(t) the state visited by that arm at time t, we 265

have: 266

Rα(n) = nν⋆ − Eα

[ n

∑
t=1

r(α(t))xα(t)

]
(2)

In principle, if one always knew which arm has the highest mean reward, playing that 267

arm indefinitely would constitute the optimal single-arm selection strategy. Nonetheless, 268

this does not necessarily identify the best policy among all possible stationary and non- 269

stationary policies if the entire statistical structure of the arms were fully known. In the 270

broader scenario over an infinite horizon, the optimal policy is characterized by the Gittins 271

index, as introduced by Gittins [30]. If each arm’s rewards were iid, then the optimal 272

solution over all admissible policies would simply be to consistently choose the best single- 273

action arm. In our work here, we limit our comparison of performance to this single-action 274

benchmark. 275

To investigate policies that minimize regret, we employ a series of preliminary results 276

to relate the regret Rα(n) to the expected number of times suboptimal arms are played. For 277

a given policy α, let Mα,i(t) represent the total number of times arm i is pulled up to time t. 278

Understanding the connection between regret and Eα[Mα,i(n)] proves critical. 279

We invoke the following lemma to establish a key relationship. We adapt and modify 280

its proof here for completeness: 281
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Lemma 1 (Adapted from Lemma 2.1 in [29]). Consider a Markov chain Y that is irreducible, 282

aperiodic, and has a finite state space S. Its transitions are governed by a probability matrix P, and 283

it begins with an initial distribution in which all states have strictly positive probability. Let Ft be 284

the σ-algebra generated by the sequence of states X1, X2, . . . , Xt, where Xt is the state at time t. 285

Suppose G is a σ-algebra independent of F = ∨t≥1Ft. Consider a stopping time τ with respect to 286

the sequence of σ-algebras {G ∨ Ft : t ≥ 1}. Define the visitation count of a particular state x ∈ S 287

up to time τ by: 288

N(x, τ) =
τ

∑
t=1

I(Xt = x).

If E[τ] is finite, then there exists a constant D(P) (depending solely on P) such that: 289

D(P) ≥
∣∣ϕxE[τ]− E[N(x, τ)]

∣∣ (3)

where ϕ = {ϕx : x ∈ S} is the stationary distribution of the chain. 290

Proof of Lemma 1. Consider the sequence of regeneration times {τk : k ≥ 0} defined by: 291

τ0 = 0,

τk = min{t > τk−1 | Xt = X1}, ∀k ∈ N

Given the chain’s irreducibility, we assert that τk < ∞ for every k. Let Bk be the kth 292

“block” of the chain: 293

Bk = (Xτk−1+1, Xτk−1+2, . . . , Xτk−1).

By the regenerative property of Markov chains, the blocks Bk are iid. The expected number 294

of visits to x in a typical block is E[N(x, B1)] = ϕxE[l(B1)], where l(B1) is the length of the 295

block B1. 296

Define T as the first return time to X1 after time τ: 297

T = min{t > τ | Xt = X1} = τκ

for some κ. Note that T − τ is also finite in expectation due to irreducibility. Applying 298

Wald’s identity: 299

E
[T−1

∑
t=1

I(Xt = x)
]
= E[κ]E[N(x, B1)] = ϕxE[l(B1)]E[κ].

Similarly, 300

E(T − 1) = E[κ]E[l(B1)].

Because E(T − τ) ≤ D(P) for some constant D(P), we have for any x ∈ S: 301

N(x, T)− (T − τ) ≤ N(x, τ) < N(x, T),

ϕxE(T − 1)− D(P) ≤ E[N(x, τ)] ≤ ϕxE(T − 1) + 1,

ϕxE[τ]− D(P) ≤ E[N(x, τ)] ≤ ϕxE[τ] + D(P),

|E[N(x, τ)]− ϕxE[τ]| ≤ D(P).

Thus, we have shown the stated bound, completing the proof. 302

Next, we relate the regret Rα(n) to Eα[Mα,i(n)], the expected count of plays of each 303

arm i up to time n: 304

Lemma 2. Under the conditions of Lemma 1, consider any strategy α that ensures the average 305

time between successive pulls of any given arm remains bounded. Then there exists a constant 306
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D(X ,P ,R)—depending on the sets {X (i)}, the probability matrices {P(i)}, and the reward 307

structures {r(i)u }—such that: 308

Rα(n) ≤
K

∑
i=1

(ν⋆ − νi)Eα[Mα,i(n)] + D(X ,P ,R). (4)

Proof of Lemma 2. For each arm i, let Hi =
∨

j ̸=i F(j) be the σ-algebra generated by the 309

observations of all arms except arm i. Since the arms are independent, Hi is independent of 310

F(i), the filtration associated with arm i. Note that Mα,i(n) is a stopping time with respect 311

to {Hi ∨ F(i)
t : t ≥ 1}. 312

Denote by {X(i)(1), X(i)(2), . . . , X(i)(Mα,i(n))} the sequence of states visited by arm i 313

within the first n steps of the policy α. The total collected reward up to time n is: 314

n

∑
t=1

r(α(t))xα(t)
=

K

∑
i=1

Mα,i(n)

∑
j=1

∑
v∈X (i)

r(i)v I(X(i)(j) = v).

By definition of regret: 315

Rα(n) = nν⋆ − Eα

[
n

∑
t=1

r(α(t))xα(t)

]
.

Rewriting and employing linearity of expectation: 316

Rα(n) = nν⋆ −
K

∑
i=1

νiEα[Mα,i(n)]

+ Eα

[
K

∑
i=1

Mα,i(n)

∑
j=1

∑
v∈X (i)

r(i)v I(X(i)(j) = v)

]

−
K

∑
i=1

∑
v∈X (i)

r(i)v ϕ
(i)
v Eα[Mα,i(n)].

Since |E[N(v, Mα,i(n))] − ϕ
(i)
v Eα[Mα,i(n)]| ≤ D(P(i)) by Lemma 1 (applied to each 317

arm’s Markov chain), we have: 318

Rα(n) ≤
K

∑
i=1

∑
v∈X (i)

D(P(i))r(i)v .

This upper bound depends on all the arms’ state spaces, transition laws, and reward 319

distributions. We thus denote this cumulative constant by D(X ,P ,R), concluding the 320

proof. 321

In essence, Lemma 2 states that the regret of any policy can be bounded by a term 322

that sums, over all arms, the product of their respective expected selection counts and 323

their suboptimality gap (ν⋆ − νi), plus a constant. This insight lays the groundwork for 324

subsequent analysis and the development of regret-minimizing strategies. 325

5. A Solution to the Problem with Bounded Regret 326

In this section, we explore a sample-based index policy, which is a UCB-type policy, 327

modified from the one introduced by [32]. This approach is adapted to our setting, where 328

each arm evolves according to a Markovian state process. Algorithm 1 shows the policy, 329

which we call the Markovian UCB (MC-UCB) policy. 330
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Algorithm 1 Markovian UCB (MC-UCB)

Require: Number of arms K, horizon T, and known transition kernels {p(i)uv : u, v ∈
X (i) for each i}.
Ensure: Sequence of selected arms {a1, a2, . . . , aT}.
Initialization: t← 1.
1: while t ≤ K do
2: Select arm at = t.
3: t← t + 1.
4: while t ≤ T do
5: for each arm i ∈ {1, 2, . . . , K} do

6: Calculate r̄(i)(Mi(t)) = r(i)(1)+r(i)(2)+...+r(i)(Mi(t))
Mi(t) .

7: Select arm at = arg maxi{r̄(i)(Mi(t)) +
√

α ln t
Mi(t)}.

8: t← t + 1.
9: return {a1, a2, . . . , aT}.

Let r(i)(m) denote the m-th observed reward from arm i and Mi(n) the number of 331

times arm i has been selected up to (and including) time n. We define the empirical mean 332

reward for arm i after n steps as: 333

r(i)(Mi(n)) =
r(i)(1) + r(i)(2) + · · ·+ r(i)(Mi(n))

Mi(n)
.

At each time step, the policy assigns an index to each arm. For arm i at step n, this 334

index is denoted by h(i)n,Mi(n). The arm chosen at time n is the one with the highest index. 335

The index is computed as follows. Initially, each arm is played exactly once. Every 336

time an arm is played, its empirical mean r(i)(·) is updated and forms the first component 337

of the index. For arms that are not played, the uncertainty regarding their true mean reward 338

increases, captured by an exploration term added to the index. The resulting index at time 339

n for arm i is of the form: 340

h(i)n,Mi(n) = r(i)(Mi(n)) +

√
α ln n
Mi(n)

.

where the constant α is set to 2 similar to the standard UCB policy [32]. 341

The proposed MC-UCB algorithm demonstrates favorable scalability with respect 342

to both the number of arms K and the number of states per arm. At each time step, the 343

algorithm performs a straightforward computation of the empirical mean reward for each 344

arm, which can be efficiently maintained using incremental updating formulas. Specifically, 345

instead of storing all past rewards, the algorithm only requires maintaining a running sum 346

and count of rewards for each arm, thereby it ensures constant time and space complexity 347

per arm. Consequently, the overall computational complexity per round scales linearly 348

with the number of arms, i.e., O(K), which makes it highly efficient even as K grows. 349

Moreover, since each arm is modeled with a finite and small number of states (up 350

to three in our theoretical framework), the state transition management incurs minimal 351

overhead. The known transition probabilities allow for precomputing stationary distri- 352

butions, which can be utilized to optimize the index calculations without necessitating 353

real-time state inference. This precomputation further reduces the computational burden 354

during the decision-making process. However, it is important to acknowledge that ex- 355

tending the model to accommodate a significantly larger number of states or unknown 356

transition probabilities would introduce additional complexity. Future work could explore 357

approximate methods or hierarchical indexing strategies to mitigate potential inefficiencies 358

in such scenarios. Nonetheless, within the current scope of three-state arms, the MC-UCB 359
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algorithm remains computationally tractable and well-suited for possible applications that 360

require rapid and scalable decision-making. 361

Below, we will show that the expected regret of this index policy grows at most on the 362

order of ln(n). To establish this, we will upper-bound the expected frequency with which 363

any suboptimal arm (those with mean reward smaller than ν⋆) is chosen. A crucial tool 364

for this analysis is a lemma from Gillman [43], which provides a bound on the probability 365

that the empirical frequency of visits to a subset of states deviates significantly from its 366

stationary distribution. 367

Lemma 3 (Based on Theorem 2.1 in [43]). Consider a reversible, irreducible, aperiodic Markov 368

chain with a finite state space X and transition matrix P. Let q be an initial distribution, and define 369

Nq =
∥∥(qx/ϕx, x ∈ X )

∥∥
2. Let λ2 be the second largest eigenvalue of P and define ϵ = 1− λ2. 370

For a subset of states W ⊆ X , define ϕW = ∑x∈W ϕx and let tW(n) be the count of visits to W up 371

to time n. Then for any β ≥ 0: 372

P
(
tW(n)− nϕW ≥ β

)
≤ (1 + βϵ/(10n))Nqe

(
− β2ϵ

20n

)
. (5)

Proof of Lemma 3. The proof can be directly derived from Theorem 2.1 in [43]. 373

We now proceed to the main theorem for our policy. The proof utilizes techniques 374

analogous to those in [32] to derive logarithmic regret bounds for the MC-UCB policy. 375

Theorem 1. Consider K arms, each arm i being modeled as a finite-state, irreducible, aperiodic, and 376

reversible Markov chain with a state space X (i). All rewards ri
x are strictly positive. Let: 377

ϕmin = min
1≤i≤K,x∈X (i)

ϕi
x, rmax = max

1≤i≤K,x∈X (i)
ri

x, rmin = min
1≤i≤K,x∈X (i)

ri
x,

378

Xmax = max
1≤i≤K

|X (i)|, ϵmax = max
1≤i≤K

ϵi, ϵmin = min
1≤i≤K

ϵi.

Define the constant α ≥ 100X2
maxr2

max/ϵmin. Then the upper bound on the regret R(n) of the UCB 379

policy is: 380

R(n) ≤ 5α ∑
i:νi<ν∗

ln n
ν∗ − νi + ∑

i:νi<ν∗
(ν∗ − νi)Ci

+ D(S ,P ,R) (6)

where 381

Ci = (Di + D∗) β + 1,

Di =
|X (i)|
ϕmin

(
1 +

ϵmax
√

α

12|X (i)|rmin

)
,

β =
∞

∑
t=1

1
t2 = π2/6.

Proof of Theorem 1. We analyze the performance of the UCB strategy with a parameter β 382

dictating the magnitude of the confidence intervals. Unless noted otherwise, the notation 383

omits superscripts related to the policy for brevity. For each arm i, let r̄i(Mi(n)) denote the 384

empirical mean reward after Mi(n) plays. Define: 385

ct,s =

√
β ln t

s
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to represent the confidence width. Let m be a positive integer. The number of times arm i is 386

selected up to time n is: 387

Mi(n) = 1 +
n

∑
t=K+1

I(β(t) = i).

We bound this as follows: 388

Mi(n) =
n

∑
t=K+1

I(β(t) = i) + 1

≤ m +
n

∑
t=K+1

I(β(t) = i, Mi(t− 1) ≥ m).

Define the event δi(t, m) by the inequality: 389

r̄∗(M∗(t− 1)) + ct−1,M∗(t−1) ≤ r̄i(Mi(t− 1)) + ct−1,Mi(t−1),

and let ξ i(t, m) correspond to: 390

min
0<s<t

(
r̄∗(s) + ct−1,s

)
≤ max

m<si<t

(
r̄i(si) + ct−1,si

)
.

Since {β(t) = i, Mi(t − 1) ≥ m} implies δi(t, m), and δi(t, m) implies ξ i(t, m), we 391

have: 392

Mi(n) ≤ m +
n

∑
t=K+1

I(ξ i(t, m)).

Expanding over all indices, one can rewrite: 393

Mi(n) ≤ m +
∞

∑
t=1

t−1

∑
s=1

t−1

∑
si=m

I
(
r̄∗(s) + ct,s ≤ r̄i(si) + ct,si

)
.

To have r̄∗(s) + ct,s ≤ r̄i(si) + ct,si , at least one of the following must hold: 394

r̄∗(s) ≤ ν∗ − ct,s, r̄i(si) ≥ νi + ct,si , or ν∗ < νi + 2ct,si .

To prevent ν∗ < νi + 2ct,si from holding, choose: 395

si ≥
3α ln n

(ν∗ − νi)2

to ensure 2ct,si ≤ ν∗ − νi. Let k =
⌈
3α ln n/(ν∗ − νi)2⌉. Consequently: 396

E[Mi(n)] ≤
⌈

3α ln n
(ν∗ − νi)2

⌉
+

∞

∑
t=1

t−1

∑
s=1

t−1

∑
si=k

P(r̄∗(s) ≤ ν∗ − ct,s)

397

+
∞

∑
t=1

t−1

∑
s=1

t−1

∑
si=k

P(r̄i(si) ≥ νi + ct,si ).

We now employ the Markov chain deviation bounds. For each arm i, let qi be the 398

initial distribution and: 399

Nqi =

∥∥∥∥∥∥
(

qi
y

ϕi
y

)
y∈X (i)

∥∥∥∥∥∥
2

.

Since qi
y > 0 and ϕi

x ≥ ϕmin, we have Nqi ≤ 1/ϕmin (using Minkowski’s inequality). Thus, 400

consider the probability: 401

P
(
r̄i(si) ≥ νi + ct,si

)
.
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Rewriting this event in terms of state visits and leveraging the deviation bounds (analo- 402

gously to Lemma 3’s result but adapted here), we obtain: 403

P
(

r̄i(si) ≥ νi + ct,si

)
≤ ∑

y∈X (i)

P
(
−ri

yni
y(si) + ri

ysiϕ
i
y ≤ −

sict,si

|X (i)|

)

= ∑
y∈X (i)

P
(

ri
yni

y(si)− ri
ysiϕ

i
y ≥

sict,si

|X (i)|

)

≤ ∑
y∈X (i)

(
1 +

ϵi√β ln t/si

12|X (i)|ri
y

)
Nqi t

− βϵi

25|X (i) |2ri
y2

(7)

≤ ∑
y∈X (i)

(
1 +

ϵmax
√

βt
12|X (i)|rmin

)
Nqi t

− βϵmin
25S2

maxr2
max

≤ ∑
y∈X (i)

√
t

(
1 +

ϵmax
√

β

12rmin

)
Nqi t

− βϵmin
25S2

maxr2
max

Substituting the value of Nqi : 404

P(r̄i(si) ≥ νi + ct,si ) ≤ ∑
y∈X (i)

(
1 +

ϵmax
√

β ln t/si

12|X (i)|rmin

)
|X (i)|
ϕmin

t
− βϵmin

25X2
maxr2

max .

A similar bound holds for P(r̄∗(s) ≤ ν∗ − ct,s), replacing |X (i)| and rmin by their 405

respective terms from the best arm’s chain X (∗). These upper bounds produce a geometric 406

decay in t, ensuring summability. Detailed manipulation leads to: 407

(ν∗ − νi)E[Mi(n)] ≤ 4α
ln n

(ν∗ − νi)
+ (ν∗ − νi)Ci.

Summing over all suboptimal arms i such that νi < ν∗: 408

∑
i:νi<ν∗

(ν∗ − νi)E[Mi(n)] ≤ 4α ∑
νi<ν∗

ln n
(ν∗ − νi)

+ ∑
i:νi<ν∗

(ν∗ − νi)Ci.

Incorporating the additional constant term D(S ,P ,R) from Lemma 2, we finally 409

establish: 410

R(n) ≤ 5α ∑
i:νi<ν∗

ln n
ν∗ − νi + ∑

i:νi<ν∗
(ν∗ − νi)Ci + D(S ,P ,R).

This proves the stated theorem. 411

The obtained bound on R(n) is of order ln n, similar to known asymptotic results, 412

but holds uniformly in n. The constant factors, however, depend on various parameters, 413

including the stationary distributions, the eigenvalue gaps ϵi, and the reward range. Proper 414

selection of a sufficiently large α (based on ϵmin, Xmax, and rmax) makes out result stronger. 415

Although setting α large is not necessary for the asymptotic scaling, it simplifies the analysis 416

and ensures that the exploration term dominates initially in a way that would result in 417

uniformly logarithmic regret over time. 418

Such constants are influenced by the intricate structure of the underlying Markov 419

chains. In special cases, these complexities can be simplified. In the next section, we present 420

a specific example of the index policy. 421
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The above analysis and the resulting logarithmic regret guarantees rely critically on 422

the assumption that the state transition probabilities for each arm are precisely known. 423

Under this assumption, the decision-maker can form accurate estimates of each arm’s 424

mean reward and state distribution over time. If these transition probabilities are even 425

slightly uncertain, the issue becomes significantly more complex. Suppose there exists a 426

small but fixed deviation δ > 0 such that for each arm i, the true transition probability p(i)uv 427

satisfies
∣∣p(i)uv − p̂(i)uv

∣∣ ≤ δ for the available (estimated) probabilities { p̂(i)uv}. Although δ can 428

be arbitrarily small, it introduces a persistent, non-vanishing discrepancy that compounds 429

over time and directly impacts the estimation of the arms’ stationary distributions and 430

expected rewards. 431

To illustrate the effect of this discrepancy, consider the long-term frequency of visits 432

to a particular state x ∈ X (i). When the transition probabilities are exact, our analysis 433

ensures that the empirical frequency closely matches the true stationary distribution ϕ
(i)
x . 434

However, with even a small error δ, let the induced perturbed stationary measure be ϕ
(i),δ
x . 435

As n→ ∞, the difference |ϕ(i)
x − ϕ

(i),δ
x | does not vanish, and any reward estimation relying 436

on the exact stationary distribution becomes systematically biased. This persistent bias 437

undermines the correctness of confidence intervals derived under the assumption of known 438

transition probabilities. Consequently, the index computations that yield logarithmic regret 439

bounds no longer hold, and the regret is no longer guaranteed to remain bounded by a 440

term of order ln n. Thus, incorporating uncertainty in transition probabilities would require 441

a fundamentally different approach, and at present, the theoretical techniques employed 442

here do not extend to handle unknown or partially known transition probabilities without 443

sacrificing the uniform logarithmic regret properties. 444

6. Simulations 445

While this work is primarily theoretical as it mainly establishes regret bounds for 446

MABs with up to three states per arm under known Markovian transition probabilities, it 447

is nonetheless instructive to provide numerical simulations. 448

6.1. Experimental Setup 449

We consider a set of K = 5 arms, each modeled as a three-state Markov chain. The 450

transition probabilities for each arm’s Markov chain, as well as the rewards associated with 451

each state, are randomly generated at the start of every simulation run. This randomized 452

setup ensures that the results represent average-case performance over a wide variety of 453

synthetic conditions rather than tuning to any particular fixed scenario. 454

Specifically, for each arm i ∈ {1, . . . , 5}, we construct its state transition probability 455

matrix P(i) and reward vector ν(i) as follows: 456

1. State Transition Probabilities: We draw each nonzero transition probability p(i)uv 457

from a Beta distribution (to ensure values between 0 and 1) and then normalize each row 458

so that they form a valid probability distribution. For example, for each row u, we sample 459

three preliminary values from Beta(α, β) with parameters (α, β) fixed with (α, β) = (2, 2) 460

for a moderate spread, and then normalize the row so that ∑v p(i)uv = 1. Each run of 461

the simulation independently re-samples these probabilities. This ensures diverse state 462

transition dynamics for each arm across runs. 463

2. Reward Distributions: Each state of each arm is assigned a reward distribution 464

centered around a mean value drawn uniformly from [0, 1]. Specifically, for arm i and state 465

u, we let: 466

µ
(i)
u ∼ Uniform(0, 1).

We then model the reward at each round from that state as: 467

r(i)t,u ∼ N̄ (µ
(i)
u , σ2),
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Figure 2. The simulation results for the specified settings under various values of σ.

where the value of σ is the standard deviation for all states and arms and N̄ (µ
(i)
u , σ2) is the 468

truncated normal distribution. Truncation ensures that rewards remain within [0, 1]. By 469

re-sampling these mean rewards and their underlying realizations in every run, we capture 470

a broad spectrum of synthetic arm behaviors. 471

3. Multiple Simulation Runs: To assess performance stability, we run each experiment 472

for Nruns = 104 independent runs (which goes beyond any reasonable confidence level 473

value). Each run involves simulating T = 104 time steps, allowing sufficient duration 474

for the algorithms to settle into steady behaviors. Due to this extensive repetition, we 475

approximate the long-run expected cumulative rewards and regret for each algorithm, 476

mitigating the variance from any particular random draw. 477

This highly synthetic and randomized environment aims to stress-test the MC-UCB 478

policy under different Markovian conditions to demonstrate how our theory-based ap- 479

proach scales to few arms and stochastic transitions. 480
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Figure 3. Full view on how the total regret changes under the different algorithms as the value of σ

changes.

6.2. Compared Algorithms and Metrics 481

We compare the proposed MC-UCB algorithm with two baseline MAB algorithms 482

adapted to Markovian settings: 483

• Classical UCB: Uses sample means and confidence bounds assuming iid rewards, 484

ignoring underlying Markov structure. Although it cannot fully exploit the known 485

transitions, it serves as a canonical benchmark. 486

• ϵ-Greedy: Selects a random arm with probability ϵ and the best empirical mean arm 487

otherwise. We set ϵ = 0.1, 0.5 as a fixed exploratory parameter. 488

We measure cumulative regret, defined as the difference between the cumulative 489

reward of an omniscient oracle that always picks the optimal state-arm combination and 490

the cumulative reward earned by the policy. Given our theoretical results, we expect 491

MC-UCB to achieve lower regret growth rates compared to the baseline methods. 492

6.3. Numerical Results 493

The results of the simulations are presented in Figure 2 and Figure 3, which illustrate 494

the cumulative regret for the algorithms across multiple values of σ (reward standard 495

deviation) and the number of rounds. The comparison includes MC-UCB, UCB, and 496

ϵ-Greedy with ϵ = 0.1 and ϵ = 0.5. 497

In Figure 2, we observe that as the value of σ increases, the overall regret grows for all 498

algorithms. However, the rate at which regret accumulates varies significantly across the 499

algorithms. The MC-UCB algorithm consistently outperforms the baselines as it exhibits 500

the lowest cumulative regret across all values of σ. Specifically, the following trends can be 501

identified: 502
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• Effect of Increasing σ: As the value of σ increases, the cumulative regret grows 503

at a faster rate for all algorithms. This is expected because higher variability in 504

rewards makes it more challenging to distinguish between the optimal and suboptimal 505

arms. Nevertheless, MC-UCB demonstrates a robust ability to adapt to this increased 506

variability and to maintain a clear performance advantage over the classical UCB and 507

ϵ-Greedy algorithms. 508

• Comparison with ϵ-Greedy: The ϵ-Greedy algorithms, with ϵ = 0.1 and ϵ = 0.5, 509

perform consistently worse than MC-UCB. Notably, ϵ = 0.5 results in lower regret 510

compared to ϵ = 0.1, as the excessive exploration prevents the algorithm from exploit- 511

ing the optimal arms efficiently. This is especially prominent in settings with low σ, 512

where unnecessary exploration leads to regret accumulation. 513

• Performance of Classical UCB: The classical UCB algorithm achieves lower regret than 514

the ϵ-Greedy variants but fails to match the performance of MC-UCB. The classical 515

UCB assumes iid rewards and does not account for the Markovian structure, which 516

limits its ability to leverage state transitions effectively. This leads to slower learning 517

of the optimal arms. 518

• MC-UCB’s Adaptability: Across all settings of σ, MC-UCB demonstrates superior 519

performance, particularly as the number of rounds increases. MC-UCB achieves faster 520

convergence to the optimal arms and maintains lower cumulative regret by leveraging 521

the Markovian structure. This advantage becomes more pronounced at higher σ 522

values, where the increased reward variability exacerbates the shortcomings of the 523

baseline algorithms. 524

Figure 3 provides a three-dimensional view of the total regret for each algorithm as a 525

function of σ and the number of rounds. The plots reveal a clear trend: while all algorithms 526

experience regret growth with increasing σ, MC-UCB consistently maintains the smallest 527

regret surface. In contrast, the classical UCB and ϵ-Greedy algorithms exhibit higher regret 528

surfaces, with ϵ-Greedy particularly struggling under larger σ values. 529

6.4. Robustness and Sensitivity to System Variations 530

Our experiments incorporate stochastic variability in both transitions and rewards. 531

While we have maintained fixed distributions for sampling these parameters, the repeated 532

randomization and large number of runs ensure that the results are not tailored to a single 533

contrived example. Over thousands of simulations, the MC-UCB algorithm consistently 534

outperforms the baselines, indicating that its theoretical properties are robust to different 535

random initializations and transitions. However, we must emphasize that these simulations 536

remain limited in scale and scope. Larger state spaces would invalidate our current 537

theoretical guarantees and cause the underlying assumptions of our derivations to fail. 538

6.5. Additional Markovian Network Scenario and Results 539

To further illustrate the flexibility of MC-UCB under a Markovian reward structure, we 540

also conduct a complementary numerical experiment wherein the arms represent network 541

links transitioning among three distinct quality states (High, Medium, and Low). The rewards 542

are interpreted as throughput (in Mbps), reflecting the link’s capacity at each time step. 543

Unlike the fully randomized approach in the previous settings, here we fix the transition 544

matrices and reward means (sampled from the dataset [44]) to highlight how variability in 545

observation noise (i.e., the standard deviation σ) impacts each algorithm’s performance. 546

We consider a simple network setting that translates to K = 3 arms, each with a 547

three-state Markov chain. The probability of remaining in or transitioning between these 548

states is encoded by a fixed transition matrix P(i) for each arm i ∈ {1, 2, 3}. For example, 549

an arm in a High state remains there with probability 0.80, transitions to Medium with 550

probability 0.15, and drops to Low with probability 0.05. We interpret the per-round reward 551

r(i)t as a throughput measurement drawn from a Gaussian distribution with mean µ
(i)
u (the 552

average throughput for state u of arm i) and variance σ2. Thus, higher reward corresponds 553
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Figure 4. Results on network-like settings under different algorithms for various levels of noise (σ).

to higher link throughput. We vary the standard deviation σ ∈ {2.0, 3.0, 4.0} to simulate 554

increasingly fluctuating network conditions. 555

We employ the same core policy classes introduced previously, with the key difference 556

being that we now deal with throughput (Mbps) as reward. Specifically: 557

1. MC-UCB: Our proposed Markovian UCB policy that can exploit knowledge of the 558

transition probabilities. 559

2. Classical UCB: A reference baseline assuming i.i.d. rewards. 560

3. Baseline-Greedy: A purely greedy strategy, always picking the arm with the highest 561

observed average so far. 562

We set the horizon to T = 10, 000 rounds. At each round, the selected arm yields a random 563

throughput sample from N (µ
(i)
u , σ2) for its current state u, and all arms then transition. 564

Our performance metric is the time-averaged throughput achieved by each policy, since 565

throughput is a key measure of network performance. 566

For each fixed σ, we run three numerical evaluation on the network simulations (one 567

for each policy) and compute the running average throughput over time. We then plot the 568

final average-throughput curves for each policy. The transition matrices, state means, and 569

values of σ remain consistent in all runs to isolate the effect of observation noise (reward 570

variability). 571
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Figure 4 illustrates the key results for each σ. The results clearly demonstrate the 572

consistent superiority of the MC-UCB algorithm across all tested noise levels (σ). For 573

σ = 2.0, MC-UCB quickly stabilizes around 6 Mbps, outperforming both Classical-UCB 574

and Baseline-Greedy, which exhibit slower convergence and slightly lower steady-state 575

throughput. As the noise level increases to σ = 3.0, MC-UCB maintains a noticeable advan- 576

tage, achieving higher initial throughput and stabilizing at a value above 6 Mbps, whereas 577

the other algorithms lag behind, converging closer to 5.5 Mbps. Even under the highest 578

noise level, σ = 4.0, MC-UCB continues to outperform its counterparts, demonstrating 579

faster convergence and sustaining higher throughput near 6 Mbps, while Classical-UCB 580

and Baseline-Greedy fall short. These results highlight the robustness and adaptability of 581

MC-UCB, making it the most effective approach in scenarios with varying noise conditions. 582

6.6. Simulation Summary 583

Using purely synthetic data, the simulation results validate the effectiveness of the pro- 584

posed MC-UCB algorithm within Markovian MAB settings, where it consistently surpasses 585

classical UCB and ϵ-Greedy algorithms under various experimental conditions. Specifi- 586

cally, MC-UCB exhibits a 15% lower cumulative regret on average compared to classical 587

UCB for the specified settings. This demonstrates that MC-UCB successfully leverages 588

the Markovian structure for efficient adaptation to state transitions. This is particularly 589

evident as the reward variability increases (with a larger σ), where MC-UCB shows superior 590

adaptability and maintains its performance advantage. This shows the robust adaptability 591

of MC-UCB across scenarios with both low and high variability compared to the other 592

baseline algorithms. The algorithm’s scalability is confirmed as MC-UCB’s regret curves 593

ascend at a slower rate over increasing rounds, which showcases its long-term efficiency. 594

The ϵ-Greedy algorithms, especially at ϵ = 0.1, encounter issues with excessive exploitation 595

in a way that leads to significantly higher regret. In contrast, while classical UCB performs 596

better than ϵ-Greedy, it fails to match MC-UCB’s performance due to its inefficiency in 597

handling state transitions. Overall, MC-UCB’s integration of the Markovian structure 598

allows it to effectively balance exploration and exploitation. 599

Furthermore, in this supplemental experiment that we conducted on the simulated 600

network and that was derived from the dataset in [44], the Markovian perspective allows 601

our MC-UCB algorithm to handle state transitions adeptly, which translates to more stable 602

performance in highly variable settings (large σ) and to higher throughput overall. This 603

supplemental experiment thus complements the more extensive randomized evaluations 604

by focusing on a single, fixed set of state transitions under network settings, which further 605

highlights MC-UCB’s efficacy in network-like applications. 606

7. Conclusion 607

In this study, we have addressed the multi-armed bandit (MAB) problem with a 608

Markovian rewards structure where each arm can transition between up to three states, 609

which simulates dependencies often seen in networked systems. We demonstrated that a 610

sample mean-based index policy, when adjusted for the complexity of our model, achieves 611

logarithmic regret uniformly over time. This effectiveness depends on setting the explo- 612

ration constant large enough relative to the eigenvalue gaps of the arms’ stochastic matrices. 613

We also presented an example using a simplified two-state Markovian reward model. The 614

numerical analysis suggests that the index policy remains near optimal even if the explo- 615

ration constant does not strictly meet the theoretical sufficiency condition. This robustness 616

indicates that our policy can be effective in a wide range of practical scenarios including 617

applications with network-like dependencies. 618
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